Extensions 1→N→G→Q→1 with N=C22 and Q=C32⋊C4

Direct product G=N×Q with N=C22 and Q=C32⋊C4
dρLabelID
C22×C32⋊C424C2^2xC3^2:C4144,191

Semidirect products G=N:Q with N=C22 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
C22⋊(C32⋊C4) = C62⋊C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C22124+C2^2:(C3^2:C4)144,136

Non-split extensions G=N.Q with N=C22 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
C22.(C32⋊C4) = C62.C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C22244-C2^2.(C3^2:C4)144,135
C22.2(C32⋊C4) = C2×C322C8central extension (φ=1)48C2^2.2(C3^2:C4)144,134

׿
×
𝔽